Full Content is available to subscribers

Subscribe/Learn More  >

The Challenges of Multiphase Flow Metering: Today and Beyond

[+] Author Affiliations
Gioia Falcone

Texas A&M University, College Station, TX

Claudio Alimonti

University of Rome “La Sapienza”, Rome, Italy

Paper No. OMAE2007-29527, pp. 823-834; 12 pages
  • ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
  • Volume 2: Structures, Safety and Reliability; Petroleum Technology Symposium
  • San Diego, California, USA, June 10–15, 2007
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4268-1 | eISBN: 0-7918-3799-8
  • Copyright © 2007 by ASME


Since the early 1990’s, when the first commercial meters started to appear, Multiphase Flow Metering (MFM) has grown from being an area of R&D to representing a discipline in its own right within the oil and gas industry. The total figure for MFM installations worldwide is now over 1,800. Field applications include production optimisation, wet gas metering, mobile well testing and production allocation. However, MFM has not yet achieved its full potential. Despite an impressive improvement in the reliability of sensors and mechanical parts (particularly for subsea installations) over the past few years, there remain unresolved questions regarding the accuracy and range of applicability of today’s MFM technology. There is also a tendency to forget the complexity of multiphase flow and to evaluate the overall performance of a MFM as a “black box”, often neglecting all the possible uncertainties that are inherent in each individual measurement solutions. This paper reviews the inherent limitations of some classical MFM techniques. It highlights the impact of instruments rangeability, empirical correlations for pressure drop devices and fluids characterisation on the error propagation analysis in the “black box”. It also provides a comprehensive review of wet gas definitions for the oil and gas industry. Several attempts have been made to define “wet gas” for the purpose of metering streams at high gas-volume-fractions, but a single definition of wet gas still does not exist. The measurement of multiphase flows presents unique challenges that have not yet been fully resolved. However, the challenges are exciting and the authors have no doubts that new milestones will soon be set in this area. Today’s MFM technology has already become one piece of the optimised production system jigsaw. MFM has succeeded in fitting with other technologies toward global field-wide solutions. The ideal MFM of the future is one that provides unambiguous measurements of key parameters from which the flow rates can be deduced independently from flow regimes and fluid properties.

Copyright © 2007 by ASME
Topics: Multiphase flow



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In