0

Full Content is available to subscribers

Subscribe/Learn More  >

Using Transient Inflow Performance Relationships to Model the Dynamic Interaction Between Reservoir and Wellbore During Pressure Testing

[+] Author Affiliations
Aldo Costantini

RWE Dea AG, Hamburg, Germany

Gioia Falcone

Texas A&M University, College Station, TX

Geoffrey F. Hewitt

Imperial College London, London, England, UK

Claudio Alimonti

University of Rome “La Sapienza”, Rome, Italy

Paper No. OMAE2007-29524, pp. 813-821; 9 pages
doi:10.1115/OMAE2007-29524
From:
  • ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
  • Volume 2: Structures, Safety and Reliability; Petroleum Technology Symposium
  • San Diego, California, USA, June 10–15, 2007
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4268-1 | eISBN: 0-7918-3799-8
  • Copyright © 2007 by ASME

abstract

The fundamental understanding of the dynamic interactions between multiphase flow in the reservoir and that in the wellbore remains surprisingly weak. The classical way of dealing with these interactions is via inflow performance relationships (IPR’s), where the inflow from the reservoir is related to the pressure at the bottom of the well, which is a function of the multiphase flow behaviour in the well. Steady-state IPR’s are normally adopted, but their use may be erroneous when transient multiphase flow conditions occur. Transient multiphase flow in the wellbore causes problems in well test interpretation when the well is shut-in at surface and the bottomhole pressure is measured. Pressure build-up (PBU) data recorded during a test can be dominated by transient wellbore effects (e.g. phase change, flow reversal and re-entry of the denser phase into the producing zone), making it difficult to distinguish between true reservoir features and transient wellbore artefacts. This paper introduces a method to derive the transient IPR’s at bottomhole conditions in order to link the wellbore to the reservoir during PBU. A commercial numerical simulator was used to build a simplified reservoir model (single well, radial co-ordinates, homogeneous rock properties) using published data from a gas condensate field in the North Sea. In order to exclude wellbore effects from the investigation of the transient inflow from the reservoir, the simulation of the wellbore was omitted from the model. Rather than the traditional flow rate at surface conditions, bottomhole pressure was imposed to constrain the simulation. This procedure allowed the flow rate at the sand face to be different from zero during the early times of the PBU, even if the surface flow rate is equal to zero. As a result, a transient IPR at bottomhole conditions was obtained for the given field case and for a specific set of time intervals, time steps and bottomhole pressure. In order to validate the above simulation approach, a preliminary evaluation of the required experimental set-up was carried out. The set-up would allow the investigation of the dynamic interaction between the reservoir, the near-wellbore region and the well, represented by a pressured vessel, a cylindrical porous medium and a vertical pipe, respectively.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In