0

Full Content is available to subscribers

Subscribe/Learn More  >

Design and Performance of Slug Damper

[+] Author Affiliations
Antonio Reinoso

e-Production Solutions, Villahermosa, Mexico

Luis E. Gomez, Shoubo Wang, Ram S. Mohan, Ovadia Shoham

University of Tulsa, Tulsa, OK

Gene Kouba

Chevron Energy Technology Company, Houston, TX

Paper No. OMAE2007-29387, pp. 747-758; 12 pages
doi:10.1115/OMAE2007-29387
From:
  • ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
  • Volume 2: Structures, Safety and Reliability; Petroleum Technology Symposium
  • San Diego, California, USA, June 10–15, 2007
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4268-1 | eISBN: 0-7918-3799-8
  • Copyright © 2007 by ASME

abstract

A novel flow conditioning device, namely, the slug damper, which can be used upstream of compact separation systems, is investigated theoretically and experimentally. In the experimental part, a 3” ID slug damper facility has been installed in an existing 2” diameter two-phase flow loop. This flow loop includes an upstream slug generator, a Gas-Liquid Cylindrical Cyclone (GLCC© ) attached to the slug damper downstream, and a set of conductance probes for measuring the propagation of the dissipated slug along the damper. Over 200 experimental runs were conducted with artificially generated inlet slugs of 50 ft length (Ls/d = 300) that were dumped into the loop upstream of the slug damper, varying the superficial liquid velocity from 0.5 to 2.5 ft/s and superficial gas velocity between 10 to 40 ft/ (in the 2” inlet pipe) and utilizing segmented orifice opening heights of 1”, 1.5”, 2” and 3”. For each experimental run, the measured data included: propagation of the liquid slug front in the damper, differential pressure across the segmented orifice, GLCC liquid level, GLCC outlet liquid flow and static pressure in the GLCC. The data prove that the slug damper is capable of dissipating long slugs, ensuring fairly constant liquid flow rate into the downstream GLCC. Also, the damper capacity to process large slugs is a strong function of the superficial gas velocity (and mixture velocity). The theoretical part includes the development of a mechanistic model for the prediction of the hydrodynamic flow behavior in the slug damper. The model enables the predictions of the outlet liquid flow rate and the available damping time, and in turn the prediction of the slug damper capacity. Comparison between the model predictions and the acquired data reveals an accuracy of 30% with respect to the available damping time and outlet liquid flow rate. The developed model can be used for design of slug damper units in the field.

Copyright © 2007 by ASME
Topics: Dampers , Design , Slug flows

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In