0

Full Content is available to subscribers

Subscribe/Learn More  >

A Novel Transition-Sensitive Conjugate Methodology Applied to Turbine Vane Heat Transfer

[+] Author Affiliations
William D. York, D. Keith Walters, James H. Leylek

Clemson University, Clemson, SC

Paper No. IMECE2003-41555, pp. 55-65; 11 pages
doi:10.1115/IMECE2003-41555
From:
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 2
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3718-1 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME

abstract

A documented numerical methodology for conjugate heat transfer was employed to predict the metal temperature of an internally-cooled gas turbine vane at realistic operating conditions. The conjugate heat transfer approach involves the simultaneous solution of the flow field (convection) and the conduction within the metal vane, allowing a solution of the complete heat transfer problem in a single simulation. This technique means better accuracy and faster turn-around time than the typical industry practice of multiple, decoupled solutions. In the present simulations, the solid and fluid zones were coupled by energy conservation at the interfaces. In the fluid zones, the Reynoldsaveraged Navier-Stokes equations were closed with a three-equation, eddy-viscosity model, developed in-house and previously documented, with the capability to predict laminar-to-turbulent boundary-layer transition. The single-point model is fully-predictive for transition and requires no problem-dependent user inputs. For comparison, a simulation was also run with a commercially available Realizable k-ε turbulence model. A high-quality, unstructured gird was employed in both cases. Numerical predictions for midspan temperature on the airfoil surface are compared to data from an open-literature experiment with the same geometry and operating conditions. The new model captured transition of the initially laminar boundary layer to a turbulent boundary layer on the suction surface. The results with the new model show excellent agreement with measured data for surface temperature over the majority of the airfoil surface. The new model showed a marked improvement over the Realizable k-ε model in all regions where laminar boundary layers exist, highlighting the importance of accurately modeling transition in turbomachinery heat transfer simulations.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In