0

Full Content is available to subscribers

Subscribe/Learn More  >

Optimal Design of Supercavitating Vehicles Based on Trimmed Flight Performance

[+] Author Affiliations
Seong Sik Ahn, Massimo Ruzzene

Georgia Institute of Technology, Atlanta, GA

Paper No. ESDA2006-95611, pp. 597-606; 10 pages
doi:10.1115/ESDA2006-95611
From:
  • ASME 8th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 1: Advanced Energy Systems, Advanced Materials, Aerospace, Automation and Robotics, Noise Control and Acoustics, and Systems Engineering
  • Torino, Italy, July 4–7, 2006
  • ISBN: 0-7918-4248-7 | eISBN: 0-7918-3779-3
  • Copyright © 2006 by ASME

abstract

Supercavitating vehicles exploit supercavitation as a means to reduce drag and increase their underwater speed. The dynamic behavior of this class of vehicles is very complex as a result of the coupling between vehicle and cavity dynamics and of their strong interactions. In addition, the hydrodynamic stability of supercavitating vehicles needs to be carefully addressed as the loads are completely different from those on conventional submerged bodies. As a supercavity completely envelops the vehicle, most of its surface is acted upon by almost negligible water-vapor forces, and only a small percentage of it is wetted. As a result, the center of pressure is always ahead of the center of mass, thus violating a fundamental principle of hydrodynamic stability. To this date, a number of basic issues need to be addressed regarding configurational design and operating conditions of supercavitating vehicles. This paper presents a preliminary investigation, where the vehicle configuration is evaluated for optimal performance during trim, level flight. The dynamic behavior of the vehicle is investigated through a 6 degrees of freedom rigid body model. In the considered formulation, the vehicle is acted upon by gravity and propulsion and by loads generated by the control surfaces of the vehicle and by the interactions with the cavity. The control surfaces include 4 fins and the cavitator disk at the nose, which produces the cavity. Trimmed conditions for assigned velocity and vehicle configurations are evaluated by solving a nonlinear system of equations resulting from the vehicle’s equation of motion. The vehicle performance is defined in terms of achievable range of operation, which is used as an objective function in an optimization problem, where basic configurational and operational parameters are considered as design variables. The presented results show that proper selection of the vehicle configuration can significantly improve the selected performance index. The simulation of the vehicle dynamic behavior in trim conditions and its response to small perturbations with respect to the trim values show the challenges associated to the limited stability of the vehicle and provide indications for future investigations.

Copyright © 2006 by ASME
Topics: Design , Vehicles , Flight

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In