Full Content is available to subscribers

Subscribe/Learn More  >

Fluid Dynamic Design Optimization of the Intake of a Small Turbojet

[+] Author Affiliations
Riccardo Amirante, Luciano A. Catalano, Andrea Dadone, Vito S. E. Daloiso, Dario Manodoro

Politecnico di Bari, Bari, Italy

Paper No. ESDA2006-95464, pp. 551-560; 10 pages
  • ASME 8th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 1: Advanced Energy Systems, Advanced Materials, Aerospace, Automation and Robotics, Noise Control and Acoustics, and Systems Engineering
  • Torino, Italy, July 4–7, 2006
  • ISBN: 0-7918-4248-7 | eISBN: 0-7918-3779-3
  • Copyright © 2006 by ASME


This paper proposes an efficient gradient-based optimization procedure for black-box simulation codes and its application to the fluid-dynamic design optimization of the intake of a small-size turbojet, at high load and zero flight speed. Two simplified design criteria have been considered, which avoid to simulate the flow in any turbojet components other than the intake itself. Both design optimizations have been completed in a computational time corresponding to that required by eight flow analyses and have provided almost coincident optimal profiles for the intake. The flow fields computed with the original and the optimal profiles are compared to demonstrate the flow pattern improvements that can be theoretically achieved. Finally, the original and the optimal profiles have been mounted on the same small-size turbojet and experimentally tested, to assess the resulting improvements in terms of overall performances. All numerical and experimental results can be obviously extended to the intake of a microturbine for electricity generation.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In