Full Content is available to subscribers

Subscribe/Learn More  >

The Second Order Statistics of High Waves in Wind Sea and Swell

[+] Author Affiliations
Peter Tromans

Ocean Wave Engineering, The Hague, The Netherlands

Luc Vanderschuren

Engineering Systems, Wavre, Belgium

Kevin Ewans

Shell International Exploration and Production, Rijswijk, The Netherlands

Paper No. OMAE2007-29676, pp. 501-509; 9 pages
  • ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
  • Volume 2: Structures, Safety and Reliability; Petroleum Technology Symposium
  • San Diego, California, USA, June 10–15, 2007
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4268-1 | eISBN: 0-7918-3799-8
  • Copyright © 2007 by ASME


The statistics of extreme wave crest elevation and wave height have been calculated for realistic, directionally spread sea and swell using a probabilistic method tested and described previously. The non-linearity of steep waves is modelled to second order using Sharma and Dean kinematics and a response surface (reliability type) method is used to deduce the crest elevation or wave height corresponding to a given probability of exceedance. The effects of various combinations of sea and swell are evaluated. As expected, in all cases, non-linearity makes extreme crests higher than the corresponding linear ones. The non-linear effects on wave height are relatively small.

Copyright © 2007 by ASME
Topics: Waves , Wind , Seas



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In