0

Full Content is available to subscribers

Subscribe/Learn More  >

Validation of a Navier-Stokes Solver for CFD Computations of Transonic Compressors

[+] Author Affiliations
Roberto Biollo, Ernesto Benini

University of Padova, Padova, Italy

Paper No. ESDA2006-95318, pp. 507-514; 8 pages
doi:10.1115/ESDA2006-95318
From:
  • ASME 8th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 1: Advanced Energy Systems, Advanced Materials, Aerospace, Automation and Robotics, Noise Control and Acoustics, and Systems Engineering
  • Torino, Italy, July 4–7, 2006
  • ISBN: 0-7918-4248-7 | eISBN: 0-7918-3779-3
  • Copyright © 2006 by ASME

abstract

The progress of numerical methods and computing facilities has led to using Computational Fluid Dynamics (CFD) as a current tool for designing components of gas turbine engines. It is known, however, that a sophisticated numerical model is required to well reproduce the many complex flow phenomena which characterize compression systems, such as shock waves and their interactions with boundary layers and tip clearance flows. In this work, the flow field inside the NASA Rotor 37, a well known test case representative of complex three-dimensional viscous flow structures in transonic bladings, was simulated using a commercial CFD code based on the 3-D Reynolds-averaged Navier-Stokes equations. In order to improve the accuracy of predictions, different aspects of the numerical model were analyzed; in particular, an attempt was made to understand the influence of grid topology, number of nodes and their distribution, turbulence model, and discretization scheme of numerical solution on the accuracy of computed results. Existing experimental data were used to assess the quality of the solutions. The obtainment of a good agreement between computed and measured performance maps and downstream profiles was clearly shown. Also, detailed comparisons with experimental results indicated that the overall features of the three-dimensional shock structure, the shock-boundary layer interaction, and the wake development can be calculated very well in the numerical approach for all the operating conditions. The possibility for a numerical model to better understand the aerodynamic behaviour of existing transonic compressors and to help the design of new configurations was demonstrated. It was also pointed out that the development of an accurate model requires the knowledge of both the physical phenomena place within the flow field and the features of the code which model them.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In