0

Full Content is available to subscribers

Subscribe/Learn More  >

The Influence of Different Scenarios of Supply Ship Collision on the Dynamic Response of a North-Sea Jacket-Pile-Soil System

[+] Author Affiliations
M. Reza Emami Azadi

Azarbaijan T.M. University, Tabriz, Iran

Paper No. OMAE2007-29039, pp. 19-26; 8 pages
doi:10.1115/OMAE2007-29039
From:
  • ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
  • Volume 2: Structures, Safety and Reliability; Petroleum Technology Symposium
  • San Diego, California, USA, June 10–15, 2007
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4268-1 | eISBN: 0-7918-3799-8
  • Copyright © 2007 by ASME

abstract

In the present study, the influence of various scenarios of supply ship collisions, namely, bow, stern and also broad-side impacts on a jacket-pile-soil system is investigated. In the previous study of ship impact on an 8-leg North-Sea Jacket Platform by Amdahl et al. [2] and also other authors, the effect of jacket-pile-soil interaction was not considered. The collision points on the jacket structure are also taken as joints and mid-span of leg, horizontal and vertical braces, namely, hard and soft impact points. The speed and the weight of the colliding vessel are also varied for typical supply vessels. Several supply ship collision analyses are carried out for bow, stern and broad-side impact scenarios on an 8-leg North-sea Jacket platform It is observed that by taking into account the jacket-pile-soil interaction effects, in particular in softer clay soils the amplitude of displacement response after supply ship impact at the deck level is increased due to yield in the upper soil layers. Contrary to this finding, less linear dynamic effects can be seen in the studied jacket-pile-soil system subjected to the supply ship impact. It can also be concluded that for soft impact scenario, the dynamic effects in the global response of the platform located in the mainly OC clayey soil may be much less than those for hard impact scenario on the same platform. For instance, for a brace impact at its mid-span, a less significant dynamic effect has been observed than for a leg impact. The duration of impact in such cases is shown to play an important role in determining the dynamic influence of the platform response. The relative energy absorption of the platform is shown to be more for broad-side loading. It is shown that the global response of the jacket platform during the collision with a supply vessel might depend largely on the scenario of the impact and to some extent on the pile-soil behavior. It is found that for the bow and stern impact scenarios, the energy contribution of the local member dent or buckling might be more significant than for the broad-side loading for which the global frame energy contribution and the overall inertia effect of the platform might be a dominant factor.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In