0

Full Content is available to subscribers

Subscribe/Learn More  >

Pipeline Integrity Management System: A New Method for Monitoring Pipeline Structural Integrity During Offshore Pipe-Lay

[+] Author Affiliations
Vincent Cocault-Duverger, Brett Howard

Technip UK Ltd., Westhill, Aberdeenshire, Scotland, UK

Paper No. OMAE2007-29464, pp. 873-879; 7 pages
doi:10.1115/OMAE2007-29464
From:
  • ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
  • Volume 1: Offshore Technology; Special Symposium on Ocean Measurements and Their Influence on Design
  • San Diego, California, USA, June 10–15, 2007
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4267-3 | eISBN: 0-7918-3799-8
  • Copyright © 2007 by ASME

abstract

Traditionally, the monitoring of the pipeline structural response to dynamic loads during offshore installation is performed indirectly by comparing the observed sea-states to a matrix of pre-run dynamic analysis cases. Offshore work is planned within a weather window such that the vessel’s station keeping and equipment capacities are not exceeded and pipeline integrity remains within code limits. Assessment of actual seastate offshore is subject to interpretation, possibly introducing undue conservatism with respect to pipe lay operations in some circumstances. This paper describes a proprietary pipeline integrity monitoring method for managing pipe-lay operations. Technip has developed and tested this approach to optimise installation weather windows for the company’s reel-lay vessel, Apache. The method integrates both office-based analysis and offshore real-time motion monitoring. Limiting equations, which represent pipeline stresses and tensions during pipe-lay as a function of the motion of the pipeline top connection, are defined during pre-campaign finite element analysis. Considerable time savings are achieved over conventional approaches by utilising multi-parametric optimisation techniques. Once offshore, the actual motions are measured in real-time using a motion reference unit mounted on the lay ramp. Recorded data can then be compared against pre-defined multi-variate response surface. The system provides a real-time indication of the stress and tension levels in the pipeline. It is believed this method could introduce greater accuracy to pipeline integrity management in some circumstances, which in turn could provide more accurate information for making operational decisions. This novel approach is presented together with a description of current dynamic analysis philosophy and an alternative approach made possible by recent improvements in analytical software and computer processing capabilities.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In