Full Content is available to subscribers

Subscribe/Learn More  >

Application of Technological Algorithms and Mathematical Modelling in Cycle Chemistry Monitoring Systems

[+] Author Affiliations
Denis S. Smetanin, Victor N. Voronov

Moscow Power Engineering Institute, Moscow, Russia

Paper No. ESDA2006-95087, pp. 21-31; 11 pages
  • ASME 8th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 1: Advanced Energy Systems, Advanced Materials, Aerospace, Automation and Robotics, Noise Control and Acoustics, and Systems Engineering
  • Torino, Italy, July 4–7, 2006
  • ISBN: 0-7918-4248-7 | eISBN: 0-7918-3779-3
  • Copyright © 2006 by ASME


Most Russian fossil fuelled power plants equipped with cycle chemistry monitoring systems (CCMS), as a tool to maintain water chemistry within operating limits, use these systems in informative mode only without performing any particular control function. Modern modeling methods allow for the optimizing of water chemistry control. According to the Russian guidelines, CCMS of a single unit depending on its type (drum or once-through boiler) should be based on on-line monitoring performed by 25–35 chemical analyzers; 50–100 “grab” sample analyses (daily) and about 20 on-line monitored operating parameters. Significant volume of the incoming information needs to be organized and presented to operating personnel in order to improve and optimize water chemistry at power plants, which is the main idea of CCMS, this can be achieved by implementing technological algorithms and modeling in the systems. Most of the operating CCMS are supplied with alarms to indicate water chemistry failure, alerting the operating personnel but not informing them about the danger and gravity of the event. The use of water chemistry evaluating algorithms based on system of indices provides data analysis for the operating personnel informing them on the danger of the event. Implementation of CCMS at power plants should change the role of laboratory monitoring from routine to diagnostic. The application of theoretical and experimental dependencies of different water quality parameters can be used for water chemistry optimization. In order to predict impurity distribution and deposit build-up on heat transfer surfaces and turbine blades, mathematical models of thermal cycles based on balance equations can be used in CCMS. Such models can be formed for ion-impurities, silica acid and corrosion products. Another type of model predicts impurity behavior in the event of deteriorating feed water chemistry. By means of such models operating personnel receive information about the time available to prevent steam chemistry failure. The model results should be compared with the available impurities solubility data. The majority of power plants have their particular water chemistry problems and technological disadvantages, which together with preventive and emergency measures are described in water chemistry guidelines applied at power plants. The application of logical algorithms based on these guidelines can be used in CCMS as an informative support to operating personnel in case of water chemistry failure. All the algorithms and mathematical models should only be used after their refinement to the individual power plant.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In