Full Content is available to subscribers

Subscribe/Learn More  >

Wind Turbine Installation for High Elevations

[+] Author Affiliations
Lorenzo Battisti

University of Trento, Trento, Italy

Ambra Giovannelli

ROMA TRE University, Rome, Italy

Paper No. ESDA2006-95004, pp. 1-9; 9 pages
  • ASME 8th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 1: Advanced Energy Systems, Advanced Materials, Aerospace, Automation and Robotics, Noise Control and Acoustics, and Systems Engineering
  • Torino, Italy, July 4–7, 2006
  • ISBN: 0-7918-4248-7 | eISBN: 0-7918-3779-3
  • Copyright © 2006 by ASME


The strong drive to exploit wind energy has recently led to new types of location for wind turbine installations being considered, including mountain regions and, to be more specific, areas at elevations coming between 800 and 2,500 m asl. Authoritative sources, such as the European Wind Energy Association (EWEA), have estimated that 20–25% of the approximately 60,000 MW expected to be installed in Europe between now and 2010 will be situated in cold-climate areas, and a part of them will be on hills and mountains. The installation of wind farms in the mountains consequently demands an in-depth analysis, in the design of such plant, into both the methods for assessing the resource and the more or less direct transfer of procedures and technologies developed for conventional sites. For the time being, the IEC standards (originally developed to provide a reference picture relating to conventional sites) fail to provide recommendations on this type of site, where the structure of the flow field is substantially more complex in terms of its effect on the stresses involved. The present work outlines the main features of mountain wind farm sites and discusses the effects of some of said features on the structural assessment of the turbines destined for such installations in the light of the IEC standard requirements. The work illustrate that the installation of wind turbines in mountain sites must consider different site-related features from those used to develop the requirements of the IEC standards. The examples given here indicate that, based on the standards, these features influence both energy generation and the turbine’s working life. Only an adequate understanding of these features can lead to a cost-effective sizing of the turbines. This type of approach can lead to a site-specific design concept, and only certain components are structurally adequate for the stress characteristics of a given site. These procedures will then have to be transferred to the standards, overcoming the conflict between the minimum standard requirements specifying the fundamental elements to consider in the project and the set of parameters describing the external conditions that demand a turbine of equivalent sturdiness in comparable applications.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In