Full Content is available to subscribers

Subscribe/Learn More  >

Advanced Components for PEMFC Stacks

[+] Author Affiliations
Chinbay Fan, Michael Onischak, William Liss

Gas Technology Institute, Des Plaines, IL

Paper No. FUELCELL2006-97144, pp. 1129-1133; 5 pages
  • ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2006 Fourth International Conference on Fuel Cell Science, Engineering and Technology, Parts A and B
  • Irvine, California, USA, June 19–21, 2006
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4247-9 | eISBN: 0-7918-3780-7
  • Copyright © 2006 by ASME


Currently, fuel cell cost reduction and long life are major priorities for fuel cells to be commercially successful for vehicle, stationary, or portable power applications. In the last five years, Gas Technology Institute (GTI) has formulated and developed a low cost, long lifetime, high conductivity proton exchange membrane (PEM) yielding state-of-the-art fuel cell performance. Additionally, a non-coated, corrosion-resistant metal alloy bipolar separator plate has been patented and tested for both hydrogen-fueled and direct methanol fueled PEMFC applications. Tests in fuel cells plus out-of-cell ASTM corrosion tests have shown very low corrosion rates under fuel cell operating conditions. Metal alloy separator plates have run for over 23,000 hours in cells with corrosion rates an order of magnitude less than the DOE target of 1 μA/cm2 . GTI’s fuel cell polymer membrane research focused on three criteria: (1) use of low cost materials; (2) polymer structures stable under fuel cell operating conditions; and (3) performance equal or better than current Nafion membrane electrode assemblies (MEAs). Fluorine-containing polymers were eliminated due to cost issues, environmental factors, and the negative influence fluorine ion loss has on metallic separator plates. The polymer membrane material was synthesized and cast into films, then fabricated into MEAs. The cost of the membrane (raw materials plus film processing materials) is estimated to be less than $10/m2 — or less than 10% of available technology. A variety of out-of-cell testing showed the membrane has sufficient strength, flexibility, and conductivity to serve as an ion conducting membrane for fuel cells. A series of 60 cm2 active area single cells and short stacks were operated over a wide range of fuel cell conditions, showing state-of-the-art MEA performance with long-term polymer stability.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In