Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation and Modeling of Liquid-Feed Direct Methanol Fuel Cell

[+] Author Affiliations
Tien-Chien Jen, Tuanzhou Yan

University of Wisconsin at Milwaukee, Milwaukee, WI

Paper No. FUELCELL2006-97088, pp. 1077-1088; 12 pages
  • ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2006 Fourth International Conference on Fuel Cell Science, Engineering and Technology, Parts A and B
  • Irvine, California, USA, June 19–21, 2006
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4247-9 | eISBN: 0-7918-3780-7
  • Copyright © 2006 by ASME


A two-phase flow model was developed for liquid-feed methanol fuel cells (DMFC) to evaluate the effects of various operating parameters on the DMFC performance. In this study, a general homogenous two-dimensional model is described in details for both porous layers and fluid channels. This two-dimensional general model accounts for fluid flow, electrochemical kinetics, current density distribution, hydrodynamics, multi-component transport, and methanol crossover. It starts from basic transport equations including mass conservation, momentum transport, energy balance, and species concentration conservation in different elements of the fuel cell sandwich, as well as the equations for the phase potential in the membrane and the catalyst layers. These governing equations are coupled with chemical reaction kinetics by introducing various source terms. It is found that all these equations are in a very similar form except the source terms. Based on this observation, all the governing equations can be solved using the same numerical formulation in the single domain without prescribing the boundary conditions at the various interfaces between the different elements of the fuel cell. Detailed numerical formulations are presented in this paper. The numerical simulation results, such as velocity field, local current density distribution, and species concentration variation along the flow channel, under various operation conditions are computed. The performance of the DMFC affected by various parameters such as temperature, pressure, and methanol concentration is investigated in this paper. The numerical results are further validated with available experimental data from the published literatures.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In