0

Full Content is available to subscribers

Subscribe/Learn More  >

Deterministic-Spectral Fatigue Analysis of a Typical Jacket Platform (SPD1) Using Directional Wave Spectrum

[+] Author Affiliations
M. Azimirad, A. R. M. Gharabaghi, M. R. Chenaghlou

Sahand University of Technology, Tabriz, East Azarbaijan, Iran

Paper No. OMAE2007-29418, pp. 527-534; 8 pages
doi:10.1115/OMAE2007-29418
From:
  • ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
  • Volume 1: Offshore Technology; Special Symposium on Ocean Measurements and Their Influence on Design
  • San Diego, California, USA, June 10–15, 2007
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4267-3 | eISBN: 0-7918-3799-8
  • Copyright © 2007 by ASME

abstract

Fixed offshore platforms or Jacket type platforms are the most common offshore structures used for oil & gas Exploration & Production industry in Persian Gulf, because water depth is such that the shallow water condition is dominant. Sea waves as dominant environmental loading are cyclic and have random nature. The applied cyclic sea wave forces will lead to fatigue damages in jacket’s joints. There are different methods to investigate the fatigue life of jackets such as deterministic method, simplified method, spectral method and transient method. Spectral method is a suitable method, which can consider the random nature of sea waves in fatigue analysis. Deterministic-spectral method developed by Bishop et al. is used to estimate the fatigue life of shallow water jacket platforms. However, in this method the frequency spectrum of waves is used in the analysis, but generally sea waves are propagating in different directions with different frequencies, so directional wave spectrum can consider wave randomness more properly. In this paper, frequency domain spectral method using Deterministic-Spectral approach has been used to estimate the fatigue life of a typical jacket platform (SPD1 at South Pars Field - Persian Gulf). Base wave cases were chosen from joint histogram of height & period that is calculated based on scatter diagrams of South Pars Field. First the jacket was modeled by ANSYS software, then by applying base wave cases to it and analyzing the critical TT joint under internal cyclic forces, hot spot stress transfer functions at 8 nodes around the intersection of joint were obtained. Using JONSWAP standard spectrum and the spreading function proposed by Goda, sea state’s Power Spectral Densities (PSD) and directional spectrums are multiplied to obtain stress spectra. The fatigue damage and fatigue life then are calculated. Results indicate that the fatigue life based on frequency spectrum is less than the fatigue life based on directional spectrum.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In