Full Content is available to subscribers

Subscribe/Learn More  >

A New Type of High Temperature Membrane for Proton Exchange Membrane Fuel Cells

[+] Author Affiliations
Jinjun Shi, Bor Jang

Wright State University, Dayton, OH

Jiusheng Guo

Nanotek Instruments, Inc., Dayton, OH

Paper No. FUELCELL2006-97043, pp. 1019-1022; 4 pages
  • ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2006 Fourth International Conference on Fuel Cell Science, Engineering and Technology, Parts A and B
  • Irvine, California, USA, June 19–21, 2006
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4247-9 | eISBN: 0-7918-3780-7
  • Copyright © 2006 by ASME


The proton exchange membrane (PEM) fuel cell operated at high temperature is advantageous than the current low temperature PEM fuel cell, in that high temperature operation promotes electro-catalytic reaction, reduces the carbon monoxide poisoning, and possibly eliminates methanol crossover in Direct Methanol Fuel Cell (DMFC). However, current commercially viable membranes for PEMFC and DMFC, such as the de-facto standard membrane of Dupont Nafion membrane, only work well at temperatures lower than 80°C. When it is operated at temperatures of higher than 80°C, especially more than 100°C, the fuel cell performance degrades dramatically due to the dehydration. Therefore, high temperature proton exchange membrane material is now becoming a research and development focus in fuel cell industry. In this paper, a new type of high temperature PEM membrane material was investigated. This new type of membrane material was optimally selected from polyether ether ketone (PEEK)-based materials, poly (phthalazinon ether sulfone ketone) (PPESK). The performance of the sulfonated PPESK membrane with degree of sulfonation (DS) of 93% was studied and compared to that of Nafion (®Dupont) 117 membrane. The result showed SPPESK has a comparable performance to Nafion (®Dupont) 117 at low temperature (<80°C) and better performance at high temperature (>80°C). The other advantage of SPPESK is that it has much lower cost than that of Nafion. These characteristics make SPPESK an attractive candidate for high temperature proton exchange membrane material.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In