0

Full Content is available to subscribers

Subscribe/Learn More  >

Analyzing the Stabilizing Tank for the Control of Rolling Motion by Model Testing and the Dynamic Absorber Theory

[+] Author Affiliations
Arthur Curty Saad

Petrobras, Rio de Janeiro, Brazil

Antonio Carlos Fernandes, Paulo de Tarso T. Esperança

COPPE/UFRJ, Rio de Janeiro, RJ, Brazil

Joel Sena Sales Junior

LabOceano, Rio de Janeiro, RJ, Brazil

Paper No. OMAE2007-29406, pp. 499-506; 8 pages
doi:10.1115/OMAE2007-29406
From:
  • ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
  • Volume 1: Offshore Technology; Special Symposium on Ocean Measurements and Their Influence on Design
  • San Diego, California, USA, June 10–15, 2007
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4267-3 | eISBN: 0-7918-3799-8
  • Copyright © 2007 by ASME

abstract

The FPSOs are a type of offshore platforms that are directional in nature. Since a large ship (presently the use of a VLCC - Very Large Crude Carrier - is very common) is used, there is a great importance the direction the waves hit the hull. Differently from a real ship, the FPSO cannot resort to maneuvering to avoid waves. It has been found that there is a possibility, in certain cases, that a rolling resonant wave may reach some stationary FPSOs and consequently, a very high response may be obtained. Sometimes, it is not possible to use large bilge keel and the alternative is to consider the use of other devices such as stabilizing tanks and U-tubes. Faced with this problem, the present work performed model tests in a deepwater ocean basin showing the effectiveness of the stabilizing tank. On the other hand, it is clear that due to the presence of mass, restoring motion and damping that the design problem may be tackled by the use of classical dynamic absorber theory. For this reason, a simplified problem was formulated by replacing the stabilizing tank by a passive concentrated mass on board. The fully nine dimensional and non-linear model are then recovered. Six degrees of freedom are to describe the ship motion and the renaming three are for the mass on board. Based on these preliminary studies, the work describes the use of tests with reduced models showing the usefulness of the theory in practice. The test results together with 2 and 4 degrees of freedom system addresses the importance of the roll-sway coupling. Subsequently, a careful linearization is made for the purpose of identifying the commanding variables such as the mass, the position above the keel, the damping, the dynamic absorber natural frequencies, etc. After that, several parametric studies have been performed, identifying the range of applicability of the variables. Finally, this theoretical-experimental exercise addresses back the use of the applicability of the stabilizing tank.

Copyright © 2007 by ASME
Topics: Motion , Testing

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In