Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of CO Influence in PBI Electrolyte PEM Fuel Cells

[+] Author Affiliations
Anders Risum Korsgaard, Mads Pagh Nielsen, Mads Bang, So̸ren Knudsen Kær

Aalborg University, Aalborg, Denmark

Paper No. FUELCELL2006-97214, pp. 911-915; 5 pages
  • ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2006 Fourth International Conference on Fuel Cell Science, Engineering and Technology, Parts A and B
  • Irvine, California, USA, June 19–21, 2006
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4247-9 | eISBN: 0-7918-3780-7
  • Copyright © 2006 by ASME


In most PEM fuel cell MEA’s Nafion is used as electrolyte material due to its excellent proton conductivity at low temperatures. However, Nafion needs to be fully hydrated in order to conduct protons. This means that the cell temperature cannot surpass the boiling temperature of water and further this poses great challenges regarding water management in the cells. When operating fuel cell stacks on reformate gas, carbon monoxide (CO) content in the gas is unavoidable. The highest tolerable amount of CO is between 50–100 ppm with CO-tolerant catalysts. To achieve such low CO-concentration, extensive gas purification is necessary; typically shift reactors and preferential oxidation. The surface adsorption and desorption is strongly dependent upon the cell temperature. Higher temperature operation favors the CO-desorption and increases cell performance due to faster kinetics. High temperature polymer electrolyte fuel cells with PBI polymer electrolytes rather than Nafion can be operated at temperatures between 120–200°C. At such conditions, several percent CO in the gas is tolerable depending on the cell temperature. System complexity in the case of reformate operation is greatly reduced increasing the overall system performance since shift reactors and preferential oxidation can be left out. PBI-based MEA’s have proven long durability. The manufacturer PEMEAS have verified lifetimes above 25,000 hours. They are thus serious contenders to Nafion based fuel cell MEA’s. This paper provides a novel experimentally verified model of the CO sorption processes in PEM fuel cells with PBI membranes. The model uses a mechanistic approach to characterize the CO adsorption and desorption kinetics. A simplified model, describing cathode overpotential, was included to model the overall cell potential. Experimental tests were performed with CO-levels ranging from 0.1% to 10% and temperatures from 160–200°C. Both pure hydrogen as well as a reformate gas models were derived and the modeling results are in excellent agreement with the experiments.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In