0

Full Content is available to subscribers

Subscribe/Learn More  >

Theoretical and Experimental Analysis of Air Gap Response and Wave-on-Deck Impact of Floating Offshore Structures

[+] Author Affiliations
Saeid Kazemi, Atilla Incecik

Newcastle University, Newcastle upon Tyne, UK

Paper No. OMAE2007-29288, pp. 297-304; 8 pages
doi:10.1115/OMAE2007-29288
From:
  • ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
  • Volume 1: Offshore Technology; Special Symposium on Ocean Measurements and Their Influence on Design
  • San Diego, California, USA, June 10–15, 2007
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4267-3 | eISBN: 0-7918-3799-8
  • Copyright © 2007 by ASME

abstract

A comparative study between the theoretical and experimental analysis of air gap response and potential wave-on-deck impact forces of floating offshore structures is the main topic of this study. Both motion of the platform and the local wave elevation are important in air gap responses and wave impact forces. So, accurate and efficient computational analysis of wave induced loads and resulting platform’s responses and wave elevation is important in the prediction of air gap and evaluation of possible wave impact force. Numerical modelling for air gap and wave impact prediction is particularly complicated in the case of floating offshore structures because of their large volume, and the resulting effects of wave diffraction and radiation. Therefore, for new floating platforms, the model tests are often performed as part of their design process. The overall aim of this study is to introduce a simplified numerical method with sufficient accuracy suitable for preliminary design stages of a floating offshore platform to predict the air gap response using hybrid method and to evaluate the vertical wave impact force using Wagner-based method. The results obtained from the proposed method have been compared with those obtained from the experiments carried out in the wave tank of the Newcastle University.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In