Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Modeling of SOFC Based on Mixed Conductive Electrolyte

[+] Author Affiliations
Hiroshi Iwai, Tatsuo Ishikawa, Hideo Yoshida

Kyoto University, Kyoto, Japan

Paper No. FUELCELL2006-97200, pp. 711-717; 7 pages
  • ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2006 Fourth International Conference on Fuel Cell Science, Engineering and Technology, Parts A and B
  • Irvine, California, USA, June 19–21, 2006
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4247-9 | eISBN: 0-7918-3780-7
  • Copyright © 2006 by ASME


As one of the possible electrolyte materials for intermediate temperature SOFCs that works around 500 to 800°C, we focus on Gadolinia Doped Ceria (GDC). This ceramic material shows reasonable ion conductivity even at 600°C. It, however, is a mixed conductive material having non-negligible electronic conductivity. In this study, the fundamental performance of a simple planar SOFC with GDC electrolyte is numerically investigated. The effects of electrical leakage on the cell performance are the main focus of discussion. The electrolyte thickness is varied in a range from 50 to 200μm. Both air and fuel flows are assumed to be steady and laminar. Governing equations are the continuity, momentum, energy and mass transfer equations. They are solved numerically by the control volume method. It is found that the leakage of electricity becomes larger for the smaller electrolyte thickness cases, and is more prominent for an electrolyte thickness of less than 80μm. Under such conditions, output power and energy conversion efficiency decrease dramatically. On the other hand, energy conversion efficiency also decreases for an electrolyte thickness that is too large because of the increase of ohmic overpotential of the electrolyte. Consequently, there seems to be an adequate thickness for the electrolyte that gives preferable output power and energy conversion efficiency.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In