0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Planar Type SOFC Stacks Operable Under Rapid Starting

[+] Author Affiliations
Kenji Ukai, Yasuhisa Nakamura, Yasunobu Mizutani, Koji Hisada, Misuzu Yokoyama, Masato Yasuhara, Kohki Nagai

Toho Gas Company, Ltd., Tokai-city, Aichi, Japan

Masahiro Hirakawa, Shoichi Kashima, Hiroshi Orishima

Sumitomo Precision Products Company, Ltd., Amagasaki, Hyogo, Japan

Sawao Honda, Shinobu Hashimoto, Hideo Awaji

Nagoya Institute of Technology, Nagoya, Aichi, Japan

Paper No. FUELCELL2006-97188, pp. 701-709; 9 pages
doi:10.1115/FUELCELL2006-97188
From:
  • ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2006 Fourth International Conference on Fuel Cell Science, Engineering and Technology, Parts A and B
  • Irvine, California, USA, June 19–21, 2006
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4247-9 | eISBN: 0-7918-3780-7
  • Copyright © 2006 by ASME

abstract

Toho Gas Co. Ltd. and Sumitomo Precision Products Co. Ltd. have been jointly developing a SOFC system using scandia-stabilized zirconia (ScSZ) electrolyte cells. Especially, we focused the scandia tetragonal zirconia polycrystalline (Sc-TZP) electrolyte, because the Sc-TZP electrolyte has good mechanical and electrical properties, therefore high reliability and power generation characteristics are expected. We have been developing the 1kW SOFC system using Sc-TZP electrolyte cells as proof of concept since 2002. The 1kW SOFC combined heat and power (CHP) system was installed in The 2005 World Exposition, Aichi, Japan (EXPO2005), and the system successfully operated during about six months. During the demonstration, some troubles caused by balance of plant (BOP) system and controlling system, and these experiences are useful to our system development. The target of our developing system is a small-scale commercial CHP application and target power range is below 10kW class. To apply such a small-scale commercial use, the rapid start up is very attractive for customers in Japanese market. In this study, we have been developing the rapid starting system. To shorten the start up time, reducing the volume of cell stack and strengthening the cell are developed in parallel. Because heating capacity is very affected factor to determine the start up time. To reduce the volume of cell stack, the improvement of cell performance is very attractive. For the electrolyte-supported type cell, the electrical conductivity of electrolyte material is very important factor on the cell performance. On the other hand, to realize the rapid start up system, the mechanical strength of electrolyte is also important factor, because in the rapid start up conditions, large temperature distribution may be easily occurred, and it leads the cell broken. The relation between electrical conductivity and mechanical strength is trade off in the electrolyte material, and then we focused the electrolyte in the range from 4mol% to 7mol%, and demonstrated that these materials have good combination of electrical and mechanical properties. To estimate the suitable composition, the mechanical strength of electrolyte from room temperature to 1073K that is the maximum operating temperature of our system were investigated. And piston on ring (POR) method was also investigated to estimate the strength of actual electrolyte sheets. Part of this work was performed as R & D program of New Energy and Industrial Technology Development Organization (NEDO).

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In