0

Full Content is available to subscribers

Subscribe/Learn More  >

A Simple Time Domain Structural Redundancy Analysis Procedure for Semi-Submersibles

[+] Author Affiliations
Partha Chakrabarti

Zentech, Inc., Houston, TX

Manoj K. Maiti

Zentech India Offshore & Marine Engg. Pvt. Ltd., Navi Mumbai, India

Paper No. OMAE2007-29084, pp. 85-91; 7 pages
doi:10.1115/OMAE2007-29084
From:
  • ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
  • Volume 1: Offshore Technology; Special Symposium on Ocean Measurements and Their Influence on Design
  • San Diego, California, USA, June 10–15, 2007
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4267-3 | eISBN: 0-7918-3799-8
  • Copyright © 2007 by ASME

abstract

Offshore design codes like ABS and IMO require some level of redundancy in semi-submersible drilling vessels to withstand the loss of a slender bracing member without overall collapse of the structure, similar to fixed structures. Wave induced dynamic forces on semi-submersibles include hydrodynamic forces on ‘large body’, and inertia forces due to rigid body motions in six degrees of freedom. The amplitudes and phases of each component of the motion are important in defining the total force. Therefore, unlike static ‘pushover’ type analysis used in a relatively dynamically insensitive fixed jacket structure, semi-submersibles require nonlinear dynamic redundancy analysis in the time domain to determine the safety against collapse due to environmental loading. A simple time domain nonlinear analysis procedure is suggested in this study to capture the realistic behavior of the structure under wave loading. Dynamic loads are generated from hydrodynamic analysis of the floating body using a diffraction-radiation analysis program which assumes that the wave excitation is harmonic and so is the response. These loads are transferred to the structural analysis model. Each wave frequency is analyzed to produce a pair of loading conditions — ‘in-phase’ and ‘out of phase’. Combining these two components, a time history of the wave loading is created. In nonlinear structural analysis, first static loads are applied. Then wave load time history is applied for a few wave cycles in small increments. Results show that nonlinear analysis for one single cycle or two can usually predict the safety against collapse. If the analysis continues for a cycle or two, the structure passes the redundancy test. If it does not, the structure has a deficiency that needs to be addressed.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In