0

Full Content is available to subscribers

Subscribe/Learn More  >

Ammonia as a Contaminant in the Performance of an Integrated SOFC Reformer System

[+] Author Affiliations
Yaofan Yi, Ashok Rao, Jacob Brouwer, Scott Samuelsen

University of California at Irvine, Irvine, CA

Paper No. FUELCELL2006-97037, pp. 485-497; 13 pages
doi:10.1115/FUELCELL2006-97037
From:
  • ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2006 Fourth International Conference on Fuel Cell Science, Engineering and Technology, Parts A and B
  • Irvine, California, USA, June 19–21, 2006
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4247-9 | eISBN: 0-7918-3780-7
  • Copyright © 2006 by ASME

abstract

As supply of natural gas (NG) is limited, more attention is being given to operating fuel cells on syngas derived from gasification of feedstocks such as coal and biomass. Ammonia (NH3 ) is one of the problematic contaminants contained in syngas produced from these nitrogen containing feedstocks. NH3 can be easily oxidized to nitric oxide (NO) in a combustion process and thus if present in the anode exhaust gas would be problematic. The potential effects of NH3 (particularly at low levels) on fuel cell system performance have not been well studied. The former studies on NH3 have been limited to either the reforming process alone or testing the fuel cell at the cell level with NH3 containing gases. No studies have been accomplished on a fuel cell system level basis. Objectives of this work are to obtain a comprehensive understanding of fuel cell system performance on syngas containing NH3 using an integrated SOFC reformer system. Detailed analysis is conducted within the three major reacting components — indirect internal reformer, SOFC stack and combustion zone. Various simulation tools (etc., CHEMKIN, ASPEN, APSAT) are utilized for analysis. Results show that NH3 conversion (into N2 and H2 ) in the internal reformer is about 50% when temperature is 750° C. NH3 conversion (into N2 and H2 ) in the SOFC stack can affect NOx emissions significantly. More than 50% NH3 left from SOFC stack can convert into NOx in the combustion zone. Experimental study is also planned to validate the theoretical results.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In