0

Full Content is available to subscribers

Subscribe/Learn More  >

A Study of Water and Oxygen Distributions in the Cathode Flow Channels of a PEM Fuel Cell

[+] Author Affiliations
Han-Sang Kim, Taehun Ha, Kyoungdoug Min

Seoul National University, Seoul, Korea

Paper No. FUELCELL2006-97240, pp. 431-437; 7 pages
doi:10.1115/FUELCELL2006-97240
From:
  • ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2006 Fourth International Conference on Fuel Cell Science, Engineering and Technology, Parts A and B
  • Irvine, California, USA, June 19–21, 2006
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4247-9 | eISBN: 0-7918-3780-7
  • Copyright © 2006 by ASME

abstract

Water management is a critical operation issue for achieving the highest possible performance of proton exchange membrane (PEM) fuel cells. Quantitative determination of water and species distribution is needed to understand the water management and reactant distribution effects. In this study, the measurement of water and oxygen distributions along cathode flow channels was carried out using gas chromatography (GC). Generally, it is difficult to measure water distribution where water concentration is too high. Here, the measurement of high levels of water saturation in cathode channels was performed according to fuel cell operating conditions. GC measurement was also carried out for flooding and non-flooding conditions. To compare the experimental results with computational results, the three-dimensional CFD simulation of a unit fuel cell was performed using es-pemfc, which is the PEM fuel cell module of commercial CFD code STAR-CD. For the entrance of flow channel that has relatively lower level of water content, the calculated results showed good agreement with measured results. However, some discrepancy between calculated and experimental results was still found for the flow channels near the cathode outlet. The study provides the necessity of the development and adoption of a comprehensive multidimensional PEM fuel cell models including two-phase flow and cathode flooding phenomena for the optimization of fuel cell performance.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In