0

Full Content is available to subscribers

Subscribe/Learn More  >

Electric Field Directed Fabrication of Biosensor Devices From Biomolecule Derivatized Nanoparticles

[+] Author Affiliations
Michael J. Heller

University of California at San Diego, La Jolla, CA

Dieter Dehlinger, Sadik Esener, Benjamin Sullivan

University of California at San Diego, San Diego, CA

Paper No. BioMed2007-38093, pp. 53-54; 2 pages
doi:10.1115/BioMed2007-38093
From:
  • ASME 2007 2nd Frontiers in Biomedical Devices Conference
  • ASME 2007 2nd Frontiers in Biomedical Devices
  • Irvine, California, USA, June 7–8, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4266-5 | eISBN: 0-7918-3797-1
  • Copyright © 2007 by ASME

abstract

An electronic microarray has been used to carry out directed self-assembly of higher order 3D structures from Biotin/Streptavidin and DNA derivatized nanoparticles. Structures with more than forty layers of alternating biotin and streptavidin and DNA nanoparticles were fabricated using a 400 site CMOS microarray system. In this process, reconfigurable electric fields produced by the microarray device have been used to rapidly transport, concentrate and accelerate the binding of 40 and 200 nanometer biotin, streptavidin, DNA and peroxidase derivatized nanoparticles to selected sites on the microarray. The nanoparticle layering process takes less than one minute per layer (10–20 seconds for addressing and binding nanoparticles, 40 seconds for washing). The nanoparticle addressing/binding process can be monitored by changes in fluorescence intensity as each nanoparticle layer is deposited. The final multilayered 3-D structures are about two microns in thickness and 50 microns in diameter. Work is now focused on assembling “micron size” biosensor devices from bio-molecule derivatized luminescent and fluorescent nanoparticles. The proposed structure for a nanolayered glucose sensor device includes a base layer of biotin/streptavidin nanoparticles, a layer of glucose oxidase derivatized nanoparticles, a layer of peroxidase derivatized nanoparticles, a layer of quantum dots, and a final layer of biotin/streptavidin nanoparticles. Such a device will serve as a prototype for a wide variety of applications which includes other biosensor devices, lab-on a-chip devices, in-vivo drug delivery systems and “micron size” dispersible bio/chem sensors for environmental, military and homeland security applications.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In