Full Content is available to subscribers

Subscribe/Learn More  >

Two-Dimensional Dynamic Simulation of Hydrogen Storage in Metal Hydride Tanks

[+] Author Affiliations
Tim M. Brown, Jacob Brouwer, G. Scott Samuelsen

University of California at Irvine, Irvine, CA

Franklin H. Holcomb

U.S. Army Corps of Engineers, Champaign, IL

Joel King

Alion Science and Technology, Warren, MI

Paper No. FUELCELL2006-97140, pp. 265-271; 7 pages
  • ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2006 Fourth International Conference on Fuel Cell Science, Engineering and Technology, Parts A and B
  • Irvine, California, USA, June 19–21, 2006
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4247-9 | eISBN: 0-7918-3780-7
  • Copyright © 2006 by ASME


As proton exchange membrane fuel cell technology advances, the need for hydrogen storage intensifies. Metal hydride alloys offer one potential solution. However, for metal hydride tanks to become a viable hydrogen storage option, the dynamic performance of different tank geometries and configurations must be evaluated. In an effort to relate tank performance to geometry and operating conditions, a dynamic, two-dimensional, multi-nodal metal hydride tank model has been created in Matlab-Simulink®. Following the original work of Mayer, Groll, and Supper and the more recent paper from Aldas, Mat, and Kaplan, this model employs first principle heat transfer and fluid flow mechanisms together with empirically derived reaction kinetics. Energy and mass balances are solved in cylindrical polar coordinates for a cylindrically shaped tank. The model tank temperature, heat release, and storage volume have been correlated to an actual metal hydride tank for static and transient adsorption and desorption processes. The dynamic model is found to accurately predict observed hardware performance characteristics portending a capability to well simulate the dynamic performance of more complex tank geometries and configurations. As an example, a cylindrical tank filled via an internal concentric axial tube is considered.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In