0

Full Content is available to subscribers

Subscribe/Learn More  >

Current Control Amplifier for Piezoelectric Actuator in Precision Positioning Control

[+] Author Affiliations
Changhai Ru

Harbin Engineering University, Harbin, China

Paper No. MNC2007-21060, pp. 1579-1583; 5 pages
doi:10.1115/MNC2007-21060
From:
  • 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
  • First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B
  • Sanya, Hainan, China, January 10–13, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4265-7 | eISBN: 0-7918-3794-7
  • Copyright © 2007 by ASME

abstract

Piezoelectric transducers are known to exhibit less hysterisis when driven with current or charge rather than voltage. Despite this advantage, such methods have found little practical application due to the poor low frequency response of present current and charge driver designs. In this paper, a current control piezoelectric amplifier is presented which can reduce hysteresis. Special circuits and a hybrid control algorithm realize the quick and precise positioning. Experimental results demonstrate that the amplifier can be used for dynamic and static applications. Low frequency bandwidths can be achieved.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In