Full Content is available to subscribers

Subscribe/Learn More  >

Femtosecond Laser Pulse Train Effects on Optical Characteristics and Nonequilibrium Energy Transport in Metal Thin Films Considering Quantum Effects

[+] Author Affiliations
Hyung Sub Sim, Seong Hyuk Lee, Young Ki Choi

Chung-Ang University, Seoul, South Korea

Seungho Park

Hongik University, Seoul, South Korea

Joon Sik Lee

Seoul National University, Seoul, South Korea

Paper No. MNC2007-21420, pp. 1453-1460; 8 pages
  • 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
  • First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B
  • Sanya, Hainan, China, January 10–13, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4265-7 | eISBN: 0-7918-3794-7
  • Copyright © 2007 by ASME


The objective of this study is to investigate numerically the electron-phonon interactions and the nonequilibrium energy transfer in metal thin films irradiated by ultrashort pulse train lasers. During laser irradiation, in particular, the temporal and spatial variations of optical properties are discussed and the influence of pulse number per train and pulse separation time is also examined. The present study uses the well-established two temperature model in describing laser-solid matter interactions and it also adopts the quantum approach to determine various properties such as electron heat capacity, electron thermal conductivity, collision frequencies, reflectivity, and absorption rates. It is found that as the pulse number per train increases, the nonequilibrium state between electrons and phonons disappears gradually because of the energy relaxation and the low electron thermal conductivity. From the results, the electron-electron and electron-phonon collision frequencies are changed significantly with the pulse number per train and the separation time per pulse, and they affect considerably reflectivity and absorption rate, leading to the change of ablation mechanism of thin metal films for the pulse train laser heating.

Copyright © 2007 by ASME
Topics: Thin films , Metals , Lasers , Trains



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In