Full Content is available to subscribers

Subscribe/Learn More  >

Manufacturing Heat Pipe by Combined Ploughing-Extrusion Process

[+] Author Affiliations
Xiaoqing Liu, Yong Tang, Minqiang Pan, Lelun Jiang

South China University of Technology, Guangzhou, Guangdong, China

Paper No. MNC2007-21374, pp. 1417-1421; 5 pages
  • 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
  • First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B
  • Sanya, Hainan, China, January 10–13, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4265-7 | eISBN: 0-7918-3794-7
  • Copyright © 2007 by ASME


Since the capillary structures in the internal wall of heat pipe dominate the heat transfer performance, the research of surface heat functional structure is being gradually extended to the fields of metastructure and microstructure. This paper proposes a combined ploughing-extrusion method with a multi-tooth tool to form the micro-groove structures in the internal surface of copper pipe. Experiments indicate that the combined ploughing-extrusion process can create rougher surface than the single ploughing-extrusion process, and some phoenix-feather-like structures appear. The capillary force comparative experiment indicates that the heat pipe manufactured by the combined method can absorb 0.2ml more liquid than the one made by single process, supposing there is 90ml liquid in the container. The heat transfer testing experiment also indicates this heat pipe can transfer more heat when the inclination angle is small, but with the increase of inclination angle, this superiority becomes not so evident due to the increased reflow resistance. The combined process that comprises more than two processes makes metal yield and generates cracks in the internal wall.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In