0

Full Content is available to subscribers

Subscribe/Learn More  >

The Role of Thermal Excitation of D Band Electrons in Ultrafast Laser Interaction With Noble (Cu) and Transition (Pt) Metals

[+] Author Affiliations
Zhibin Lin, Leonid V. Zhigilei

University of Virginia, Charlottesville, VA

Paper No. MNC2007-21076, pp. 1199-1204; 6 pages
doi:10.1115/MNC2007-21076
From:
  • 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
  • First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B
  • Sanya, Hainan, China, January 10–13, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4265-7 | eISBN: 0-7918-3794-7
  • Copyright © 2007 by ASME

abstract

The temperature dependences of the electron heat capacity and electron-phonon coupling factor for noble (Cu) and transition (Pt) metals are investigated based on the electron density of states (DOS) obtained from ab initio electronic structure calculations. For Cu, d band electrons could be thermally excited when the electron temperature exceeds ∼3000 K, leading to a significant increase, up to an order of magnitude, in the electron-phonon coupling factor and strong enhancement of the electron heat capacity away from the linear dependence on the electron temperature, which is commonly used in most of the current computational and theoretical investigations of ultrafast laser interactions with metals. Opposite to the case in Cu, the thermal excitation of d band electrons in Pt leads to a monotonic decrease of the electron-phonon coupling factor and contributes to significant negative deviations of the electron heat capacity from the linear dependence in the range of electron temperatures that are typically realized in ultrafast laser material processing applications. Strong and drastically different temperature dependences of the thermophysical properties predicted for Cu and Pt point to the importance of the electron DOS effects and the necessity of full consideration of thermal excitation of d band electrons for realistic modeling of short pulse laser interaction with noble and transition metals.

Copyright © 2007 by ASME
Topics: Electrons , Metals , Lasers

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In