0

Full Content is available to subscribers

Subscribe/Learn More  >

Study the Order of Morphology Self-Assembled Triblock Copolymer Thin Films by FFT of the AFM Images

[+] Author Affiliations
Yongzhi Cao, Shen Dong, Yingchun Liang, Tao Sun, Xuesen Zhao

Harbin Institute of Technology, Harbin, Heilongjiang, China

Paper No. MNC2007-21063, pp. 1181-1184; 4 pages
doi:10.1115/MNC2007-21063
From:
  • 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
  • First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B
  • Sanya, Hainan, China, January 10–13, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4265-7 | eISBN: 0-7918-3794-7
  • Copyright © 2007 by ASME

abstract

A variety of block copolymer thin films with well-ordered nanostructures, which can be employed as templates for nanotechnologies including nanostructure membranes, nanoparticle synthesis, photonic crystal, and high-density information storage media, can be realized simply and at low cost by self-assembly. Long range ordering of morphology is paramount to realize applications of self-assembled block copolymer thin films in nanotechnologies. A better understanding of what parameters affect the ordering process can lead to the production of highly ordered arrays of nanostructures. In this paper, in order to effectively analyze the improvement in ordering, the Fast Fourier transform (FFT) analysis of the AFM images is used. Fast Fourier transform provide a mathematical analysis of the image that is similar to producing a diffraction pattern. From this “diffraction pattern” information on the order in the system can be obtained. Moreover, calculating an ordering parameter from the FFT provides a quantitative measure of the order present in the polymer template. The order parameter is calculated using equations which were tested against a manufactured perfect system and imperfect system to ensure that a perfect system would provide an order parameter of 1 and an imperfect system would create an order parameter of 0. The results show that the method is reasonable and effective to analyze the improvement in ordering that is achieved by using solvent annealing. Furthermore, the method can be used to understand the parameters in triblock copolymer thin film self-assembly process that create the most well ordered system.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In