Full Content is available to subscribers

Subscribe/Learn More  >

Study on the Friction and Wear Behavior of PEEK Composites Filled With Nanometer Compounds and PTFE

[+] Author Affiliations
Xu-Dong Peng, Ji-Yun Li

Zhejiang University of Technology, Hangzhou, China

Qun-Feng Zeng

Xi’an Jiaotong University, Xi’an, China

Paper No. MNC2007-21442, pp. 1107-1111; 5 pages
  • 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
  • First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B
  • Sanya, Hainan, China, January 10–13, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4265-7 | eISBN: 0-7918-3794-7
  • Copyright © 2007 by ASME


The friction and wear behavior of polyetheretherketone (PEEK) composites was investigated, which are reinforced with nanometer Al2 O3 or nanometer TiO2 and blended with polytetrafluoroethylene (PTFE) in a fixed weight fraction of 10% and are prepared by heat compression moulding. The studies emphasized particularly on the nanometer Al2 O3 filled PEEK composites. The tests were performed on a pin-on-disc test apparatus with a PEEK composite pin sliding against AISI 1020 carbon steel disc under dry friction conditions and were all carried out at room temperature. The worn surfaces of the PEEK composites were examined by scanning electron microscopy (SEM). Results indicated that the above PEEK composites exhibited lower friction coefficient and wear rate in comparison with the mixture of PEEK with PTFE. The SEM micrographs of the worn surfaces indicated that the scratched and ploughed marks appeared on the wear scar of PEEK filled with PTFE, while the scuffing on the worn surfaces of nanometer Al2 O3 /PTFE/PEEK was obviously abated. The optimal content of nanometer Al2 O3 in the filled PEEK composite should be recommended as 6.5 wt %. The friction behavior of the nanometer TiO2 /PTFE/PEEK composites was far better than that of the nanometer Al2 O3 /PTFE/PEEK composites under the same test conditions and with the same content of nanometer compounds, which was perhaps due to much more strong synergistic effect between nanometer TiO2 and PTFE than that between nanometer Al2 O3 and PTFE.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In