Full Content is available to subscribers

Subscribe/Learn More  >

Modeling Gaseous Flows Through Micro- and Nano-Channels

[+] Author Affiliations
Hongwei Sun

University of Massachusetts at Lowell, Lowell, MA

Mohammad Faghri

University of Rhode Island, Kingston, RI

Paper No. MNC2007-21302, pp. 1043-1049; 7 pages
  • 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
  • First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B
  • Sanya, Hainan, China, January 10–13, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4265-7 | eISBN: 0-7918-3794-7
  • Copyright © 2007 by ASME


The overall object of this paper is a systematic study of gaseous flows in two-dimensional micro- and nano-channels in terms of the effects of compressibility, rarefaction, and surface roughness which are usually neglected in conventional flow analysis, using direct simulation Monte Carlo (DSMC) method. The flows are mainly in slip and transition regimes that are often encountered in Microelectromechanical Systems (MEMS), Nanoelectromechanical Systems (NEMS), and other microscale devices in diverse fields like molecular biology, space propulsion, and particle physics. For the effect of compressibility, two flows with same outlet Knudsen number (Kn) but different pressure drop ratios (case1:1.3, case2: 4.5) were simulated. It was found that high pressure drop flow (case2) show a 15% higher friction coefficient than that of a fully developed flow while the low pressure drop flow (case1) is consistent with incompressible flow prediction. The inspection for the velocity profile development shows that when pressures drop increase along the channel, the center-line velocity become flatten and the velocity gradients near the wall are higher compared with parabolic velocity profile. The effect of rarefaction was studied by simulating two nitrogen flows with low-pressure drop ratio (= 1.9) but different Kn numbers. (case3: 0.043, case4: 0.083). The pressure distribution, velocity profile, local friction coefficient are checked. The comparison with continuum flow theory (fRe = 24.0) shows that the rarefactions reduce the friction coefficient by 22% and 36% for case3 and case4, respectively. Apparent velocity slips along the channel wall exist for these flows. A locally fully developed model based on local velocity slip and fully developed assumptions predicts the friction coefficient accurately but fails in transition region where the Kn is over 0.1. Two important ratios are investigated for surface roughness effect in micro- and nano-channel flows: relative roughness and distribution of roughness. The DSMC results show that the surface roughness has more profound effect for a lower Kn number microchannel flow. The roughness distribution also plays a very important role in microchannel flows. The denser the roughness distribution, the higher friction coefficient. The future work will focus on flows in free-molecular flow regime and three-dimension geometries.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In