Full Content is available to subscribers

Subscribe/Learn More  >

Design of an Electroosmotic Micromixer Using CFD

[+] Author Affiliations
Xiaozhang Wang, Zhuangde Jiang, Chaohui Wang

Xi’an Jiaotong University, Xi’an, China

Paper No. MNC2007-21148, pp. 995-1003; 9 pages
  • 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
  • First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B
  • Sanya, Hainan, China, January 10–13, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4265-7 | eISBN: 0-7918-3794-7
  • Copyright © 2007 by ASME


A numerical computational model of electroosmotic micromixer is developed using a CFD software package, and numerical simulations are executed to verify its accuracy. This rectangular microchannel mixer utilizes heterogeneous surface potential to form recirculation flow and enhance mixing in channel. The basic ζ potential of channel walls is −25mV, and the modulated potentials are +200mV and −200mV, respectively. Several ζ potential modulation modes are studied to optimize the ζ potential modulation, which pattern different modulated ζ potential regions on the top and bottom channel surfaces to produce in-plane vortex. Single-plane (top or bottom) and double-plane (top and bottom) drive vortex are investigated to show their characteristics and influences upon the mixing process. According to the simulation results, a reference entry length indicates that the ratio of entry length to channel width must be greater than one to eliminate the corner effect completely. Mixing process of two kind of modulation arrangements are also compared with the aim of a more effective mixing. In the end an electroosmotic mixer is designed and simulated numerically, which works under a 50000V/m electric field and can get a flowrate about 0.5nL/m with mix length less than one centimeter.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In