0

Full Content is available to subscribers

Subscribe/Learn More  >

Nanofluids Containing Hybrid Sphere/Carbon Nanotube Particles

[+] Author Affiliations
Zenghu Han, Bao Yang, S. H. Kim, M. R. Zachariah

University of Maryland, College Park, MD

Paper No. MNC2007-21331, pp. 861-864; 4 pages
doi:10.1115/MNC2007-21331
From:
  • 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
  • First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B
  • Sanya, Hainan, China, January 10–13, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4265-7 | eISBN: 0-7918-3794-7
  • Copyright © 2007 by ASME

abstract

Previous studies on nanofluids have focused on spherical or long-fiber particles. In this work, a new type of complex nanoparticles—hybrid sphere/carbon nanotube (CNT) particle, consisting of numerous CNTs attached to an alumina/iron oxide sphere—is proposed for applications in nanofluids. In such hybrid nanoparticles, heat is expected to transport rapidly from one CNT to another through the center sphere and thus leading to less thermal-contact-resistance between CNTs when compared to simple CNTs dispersed in fluids. CNTs have an extremely high thermal conductivity, but thermal resistance between the CNTs and the fluid has limited their performance in the nanofluids. The proposed hybrid sphere/CNT particles are synthesized by a spray pyrolysis followed by catalytic growth of CNTs. The spheres are about 70 nm in diameter in average, and the attached CNTs have a length up to 2μm. These hybrid nanoparticles are dispersed to poly-alpha-olefin with sonication and a small amount of surfactants to form stable nanofluids. The thermal conductivity of the fluids has been measured by a 3ω-wire method over a temperature range 10–90°C. The results indicate that the effective thermal conductivity of the fluids is increased by about 21% at room temperature for particle volume fractions of 0.2%.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In