Full Content is available to subscribers

Subscribe/Learn More  >

Nanoscale Modeling and Simulation of Interfacial Bonding of Single-Walled Nanotube Reinforced Composites

[+] Author Affiliations
Jihua Gou, Shunliang Jiang, Bob Minaie

University of South Alabama, Mobile, AL

Zhiyong Liang, Chuck Zhang, Ben Wang

FAMU-FSU College of Engineering, Tallahassee, FL

Paper No. IMECE2003-41138, pp. 815-819; 5 pages
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems and Photonic Design, and Nanotechnology
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3714-9 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME


Owning to the extraordinary mechanical, electrical and thermal properties of single-walled nanotubes (SWNTs), SWNT reinforced composites can be used for various applications. In the development of SWNT reinforced composites, one of the fundamental issues that scientists and engineers are confronting is the SWNT-polymer interfacial bonding, which will determine the load transfer capability from the polymer matrix to the nanotube. In single-walled nanotube (SWNT) reinforced epoxy composites, the epoxy resin molecules and the nanotubes are at the nano scale. the interaction at the SWNT/epoxy resin interface is highly dependent on their local molecular structures and bonding. At this small length scale, the lattice structures of the nanotube and the epoxy resin cannot be considered continuous, and their interfacial properties cannot be determined through continuum mechanics. In this paper, the interfacial bonding of SWNT reinforced epoxy composites is investigated using molecular mechanics and molecular dynamics simulations based on a cured epoxy resin model, which is constructed by incorporating three-dimensional crosslinks formed with Shell EPON 862 epoxy resin and EPI CURE W curing agent during polymerization. The interfacial bonding energy between the SWNT and the cured epoxy resin is analyzed using molecular mechanics. Furthermore, the pullout of a SWNT from the cured epoxy resin is investigated using molecular dynamics simulations. Based on the pullout simulation, the interfacial shear strength between the SWNT and the cured epoxy resin is calculated to be up to 75MPa. These analysis results indicate that there could be an effective stress transfer from the epoxy resin to the nanotube.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In