0

Full Content is available to subscribers

Subscribe/Learn More  >

Fluid Flow and Heat Transfer Characteristics of Slug Bubbly Flow in Micro Condensers

[+] Author Affiliations
J. S. Hu, Christopher Y. H. Chao

The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

Paper No. MNC2007-21102, pp. 769-775; 7 pages
doi:10.1115/MNC2007-21102
From:
  • 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
  • First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B
  • Sanya, Hainan, China, January 10–13, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4265-7 | eISBN: 0-7918-3794-7
  • Copyright © 2007 by ASME

abstract

Experiments were carried out to study the condensation flow pattern in silicon micro condenser using water as medium. Five flow patterns were identified under our experimental conditions. Slug-bubbly flow and droplet/liquid slug flow were found to be the two dominant flows in the micro condenser. These two flow patterns subsequently determined the heat transfer and pressure drop properties of the fluid. It was observed that only slug-bubbly flow existed in low steam mass flow and high heat flux conditions. When the steam mass flow rate increased or the heat flux dropped, mixed flow pattern occurred. An empirical correlation was obtained to predict when the transition of the flow pattern from slug-bubbly flow to mixed flow could appear. In the slug-bubbly flow regime, heat transfer coefficient and pressure drop in the micro condensers were studied. It was found that micro condensers with smaller channels could exhibit higher heat transfer coefficient and pressure drop. At constant heat flux, increasing the steam mass flow rate resulted in a higher heat transfer coefficient and also the pressure drop.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In