Full Content is available to subscribers

Subscribe/Learn More  >

Analytic Calculation About the Strain Distribution of Any-Shaped Self-Organized Quantum Dot

[+] Author Affiliations
Yumin Liu, Zhongyuan Yu

Beijing University of Posts and Telecommunications, Beijing, China

Paper No. MNC2007-21371, pp. 689-692; 4 pages
  • 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
  • First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B
  • Sanya, Hainan, China, January 10–13, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4265-7 | eISBN: 0-7918-3794-7
  • Copyright © 2007 by ASME


The strain distribution of quantum dots is analytically calculated using the Green’s function technique; the general expressions for any shaped quantum dot are derived. As examples, this method is applied to cube, pyramid column, and taper-shaped quantum dot. Our expressions are correct comparing with the calculated results by finite element method and finite difference. This approach is very powerful and can be applied to any-shaped quantum dot, especially this method can directly used in the calculation of electronic structure of quantum dot by the envelop function approximation or plane wave expansion methods, because the analytic expression can exactly calculate the strain at any position. In the paper, we give the strain distribution of four types of shaped quantum dot, and some comparisons are given with the results calculated by the finite element method.

Copyright © 2007 by ASME
Topics: Quantum dots



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In