0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis the Strain Distribution of GaN/AlN Self-Organized Pyramid Quantum Dot

[+] Author Affiliations
Yumin Liu, Zhongyuan Yu

Beijing University of Posts and Telecommunications, Beijing, China

Paper No. MNC2007-21370, pp. 681-687; 7 pages
doi:10.1115/MNC2007-21370
From:
  • 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
  • First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B
  • Sanya, Hainan, China, January 10–13, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4265-7 | eISBN: 0-7918-3794-7
  • Copyright © 2007 by ASME

abstract

Based on the three-dimensional finite element approach, we investigate the strain field distribution of the GaN/AlN self-organized quantum dot. The truncated hexagonal pyramid quantum dot that has been found in experiment is adopted as the physical model in our simulation. The material elastic constants parameters used in this paper are of wurtzite structure, and there are five independent elastic constants. In dealing with the lattice mismatch, we employ a three-dimensional anisotropic pseudo-thermal expansion. We compare the calculated results with that calculated by Green’s function theory, in which many assumptions are made, and prove the correctness of our results. The strain distributions of the equal strain surface three-dimensional contour plots of the six strain components are given. Finally, the anisotropic characteristics of the GaN/AlN quantum dot material are discussed, the results demonstrate that the position of the elastic strain energy density minimum position is just located above the buried quantum dot and have no influence on the thickness of the capping layer. So the anisotropy has no obvious influence on the vertical alignment of post-growth of the next layer of quantum dots. Our model does not adopt the assumptions used in the Green’s function approach, so better reliability and precision of results are expected.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In