Full Content is available to subscribers

Subscribe/Learn More  >

Modeling and Analysis of Crack Growth in SnPb and SnAgCu Solder Joints in PBGA Packages: Part II — Crack Propagation

[+] Author Affiliations
Donghyun Kim, Glenn Y. Masada, Tess J. Moon

University of Texas at Austin, Austin, TX

Andrew Mawer

Motorola, Inc., Austin, TX

Paper No. IMECE2003-43237, pp. 515-521; 7 pages
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems and Photonic Design, and Nanotechnology
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3714-9 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME


Part II of this paper describes an experimental and analytical study of crack propagation in SnPb and SnAgCu solder joints in 357-PBGA packages exposed to 30-minute thermal cycles of 0 to 100°C. Experimental results show that cracks propagate faster at the package interface than at the board interface; secondary cracks from at the package interface, but grow much slower than the primary cracks; and crack growth rates in SnPb joints are about 50% larger than in SnAgCu joints. A crack propagation model, developed using the fracture mechanics approach, calculates the energy release rate at the crack tip. Using this rate and experimental crack length data, crack propagation rates were computed. Simulation results show the effects of solder type and aging conditions on crack propagation rates and the effects of the number of cracks in a joint on crack propagation life.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In