0

Full Content is available to subscribers

Subscribe/Learn More  >

A Novel Demodulation Scheme in the Digital Readout System for a Micro-Machined Gyroscope

[+] Author Affiliations
Lu Liu, Yi-Chao Song, Xu-Zong Chen

Peking University, Beijing, China

Paper No. MNC2007-21400, pp. 523-528; 6 pages
doi:10.1115/MNC2007-21400
From:
  • 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
  • First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B
  • Sanya, Hainan, China, January 10–13, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4265-7 | eISBN: 0-7918-3794-7
  • Copyright © 2007 by ASME

abstract

A novel demodulation scheme with Sage-Husa adaptive Kalman filtering algorithm is presented for the digital readout system of a micro-machined gyroscope. Based on the analysis of the detection signal from gyroscope, a mathematical model of the detection signal is established in the condition of the additive white Gaussian noise, and the state and observation model for the demodulation scheme are also given. Moreover, the simulation system is built by the Matlab/Simulink. Assuming the input signal of angular velocity is the step or sine function, and the statistical characteristics of the noise in the detection signal are unknown, simulations are given to demodulate the detection signal with different SNRs (signal-to-noise ratio). In addition, the phase sensitive demodulation scheme in the analog readout system is simulated for comparison. Results show that, the demodulation gains reach +24.23dB (input SNR is above −12.04dB) and +23.92dB (input SNR is above −16.99dB) respectively when the angular velocity input is Ω = 0.005[deg/s] for the step function, while Ω = 0.005 sin(2π × 50t)[deg/ s] for the sine function. Meanwhile, the demodulation gain increases along with the decreasing SNR of the detection signal. Compared with the analog phase sensitive demodulation scheme, the demodulation output with Sage-Husa adaptive Kalman algorithm has the shorter convergence time, but about 5dB higher of MSE (mean square error). In conclusion, the novel demodulation scheme with Sage-Husa adaptive Kalman filtering algorithm can real-timely and precisely estimate the covariance of dynamic noise in the detection signal from gyroscope, and increase the SNR of the demodulation signals dramatically. It can demodulate the angular velocity accurately and quickly, and shows a good practicability.

Copyright © 2007 by ASME
Topics: Micromachining

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In