Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Resistance of Particle Laden Polymeric Thermal Interface Materials

[+] Author Affiliations
Ravi S. Prasher, Jim Shipley, Suzana Prstic, Paul Koning, Jin-Lin Wang

Intel Corporation, Chandler, AZ

Paper No. IMECE2003-41034, pp. 431-439; 9 pages
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems and Photonic Design, and Nanotechnology
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3714-9 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME


Particle laden polymers are one of the most prominent thermal interface materials (TIM) used in electronics cooling. Most of the research has primarily dealt with the understanding of the thermal conductivity of these types of TIMs. For thermal design, reduction of the thermal resistance is the end goal. Thermal resistance is not only dependent on the thermal conductivity, but also on the bond line thickness (BLT) of these TIMs. It is not clear which material property(s) of these particle laden TIMs affects the BLT and eventually the thermal resistance. This paper introduces a rheology based semi-empirical model for the prediction of the BLT of these TIMs. BLT depends on the yield stress of the particle laden polymer and the applied pressure. The BLT model combined with the thermal conductivity model can be used for modeling the thermal resistance of these TIMs for factors such as particle volume faction, particle shape, base polymer viscosity, etc. This paper shows that there exists an optimal filler volume fraction at which thermal resistance is minimum. Finally this paper develops design rules for the optimization of thermal resistance for particle laden TIMs.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In