Full Content is available to subscribers

Subscribe/Learn More  >

Fabrication of Nano-Electromechanical Structures Down to 20 nm by Spacer Technology

[+] Author Affiliations
Xiang Han, Ling Xia, Wengang Wu, Guizhen Yan, Jun Xu, Yilong Hao

Peking University, Beijing, China

Paper No. MNC2007-21174, pp. 403-407; 5 pages
  • 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
  • First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B
  • Sanya, Hainan, China, January 10–13, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4265-7 | eISBN: 0-7918-3794-7
  • Copyright © 2007 by ASME


Spacer technology has been developed to fabricate nano-structures for NEMS application. It provides a parallel nano-fabrication method with double or quadplex device density at a certain lithography node. By controlling the deposited film thickness, the feature size of the SiO2 spacer hard mask is reduced down to 35 nm. After the spacer pattern is transferred to Si, a precise thermal oxidation is performed to improve the profile and reduce the plasma damage. Finally, sublimation or HF vapor phase etching is introduced to release the nano-structures according to different structure dimensions. As a result, with better surface morphology, suspended Si nano-beams with a width of 20 nm are obtained. Actuated by mechanical vibration and electrostatic forces, vibrations of the obtained cantilever beams and fixed-fixed beams are observed in SEM. In addition, a metallic nano-nozzle with a diameter of 140 nm is established by electroless plating around the suspended Si nano-beam served as a mold. As a development of the spacer technology, nano-needle array is demonstrated at the cross points of crossed SiO2 spacers by anisotropic etching. The diameters of the hybridized nano-needles are 300 nm so far and can be further reduced by smaller spacer dimension.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In