0

Full Content is available to subscribers

Subscribe/Learn More  >

Molecular Dynamics Simulations of Nanotube-Polymer Composites for Use as Thermal Interface Material

[+] Author Affiliations
S. Mahajan, G. Subbarayan

Purdue University, West Lafayette, IN

B. G. Sammakia, W. Jones

Binghamton University, Binghamton, NY

Paper No. IMECE2003-42462, pp. 381-385; 5 pages
doi:10.1115/IMECE2003-42462
From:
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems and Photonic Design, and Nanotechnology
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3714-9 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME

abstract

Thermal management in microelectronics is an important issue due to the projected increase in power dissipation in the electronic devices over the next 5–10 years. We seek a solution to this problem by exploring carbon nanotube-polymer matrix composites for use as thermal interface materials because of the reported high thermal conductivity and other remarkable thermal and mechanical properties of nanotubes. As an intermediate step to finding the composites’ conductivity, it is important to validate the use carbon nanotubes by calculating its diffusivity and conductivity first. This would facilitate later the estimating of important design parameters for thermal interface materials such as thermal diffusivity and conductivity. As polymer molecules are on the same size scale as nanotubes and the interaction at the polymer/nanotube interface is highly dependent on the molecular structure and bonding, Molecular Dynamic (MD) simulation is used to estimate the nano-scale properties. In this paper, until cell model consisting of a carbon nanotube was used and the diffusivity was measured. These findings would have implications in improving the thermal management efficiency and consequently improve the performance and reliability of future microelectronic devices.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In