0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Moisture on the Elastic Modulus and Interfacial Adhesion of Polymer-Metal Components in Microelectronic Assemblies

[+] Author Affiliations
Timothy P. Ferguson, Jianmin Qu

Georgia Institute of Technology, Atlanta, GA

Paper No. IMECE2003-41903, pp. 357-361; 5 pages
doi:10.1115/IMECE2003-41903
From:
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems and Photonic Design, and Nanotechnology
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3714-9 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME

abstract

Moisture poses a significant threat to the reliability of microelectronic assemblies and can be attributed as being one of the principal causes of many premature package failures. It is a multi-dimensional concern in electronic packaging, having an adverse effect on package reliability by changing both the mechanical properties and interfacial adhesion of the microelectronic assembly. In this paper, a study has been conducted to evaluate the moisture-induced degradation of both the elastic modulus of a commercially available no-flow underfill and the interfacial adhesion of the underfill to a copper alloy substrate. Three different levels of moisture preconditioning, 85C/50%RH, 85C/65%RH, and 85C/85RH%, were implemented in this study. Diffusion coefficient test specimens were constructed to experimentally measure the moisture diffusivity into the underfill resin and obtain the moisture saturation concentration for each level of moisture preconditioning. Flexural bend test specimens were made to characterize the effect of moisture on the elastic modulus of the underfill adhesive. Last, interfacial fracture toughness specimens with prefabricated interface cracks were used in a four point bending test to quantify the effect of moisture on interfacial fracture toughness. The results of this study will aid in the development of more robust microelectronic assemblies, demonstrating how both the elastic modulus and interfacial toughness change as a function of moisture concentration.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In