0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injector: Part 14—Cooling Characteristics of the Particulate Core Material Debris Accumulated in Horizontal Narrow Gap

[+] Author Affiliations
Y. Hirao, K. Sugiyama, T. Narabayashi

Hokkaido University, Sapporo, Japan

G. Su

Xi’an Jiaotong University, Xi’an, China

M. Mori, S. Ohmori

Tokyo Electric Power Company, Yokohama, Japan

Paper No. ICONE14-89750, pp. 917-921; 5 pages
doi:10.1115/ICONE14-89750
From:
  • 14th International Conference on Nuclear Engineering
  • Volume 3: Structural Integrity; Nuclear Engineering Advances; Next Generation Systems; Near Term Deployment and Promotion of Nuclear Energy
  • Miami, Florida, USA, July 17–20, 2006
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4244-4 | eISBN: 0-7918-3783-1
  • Copyright © 2006 by ASME

abstract

When LOCA occurs in proposed nuclear reactor systems, the coolability of the core would be kept by the SI core injection system and therefore the probability of the core meltdown is negligible small. In this research work, we make it clear that the coolability of the RPV bottom is secured even if a part of the core should melt and a substantial amount of debris should be deposited on the lower plenum. In this report, we examined experimentally the coolability of the RPV bottom that a Zircaloy-based loose debris layer is deposited on. We set up a heat supply section made by SUS304 on the loose debris layer and measured the heat flux released into the loose debris bed and the temperature at the lower surface of the heat supply section. In addition, we measured the temperature distribution at the bottom of the loose debris bed. It became clear in this study that the coolability depends on the amount of coolant supplied, and the hot spot would not occur when coolant is supplied. Even if a hotspot should occur in the oxidization of loose metal debris accompanied with rapid heat generation. It is found that when a small amount of coolant can be supplied, it disappears because of a high capillary force of oxidized loose debris. So it is confirmed that the soundness of RPV is basically maintained.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In