0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of a Novel Micro-Gripper Integrating Tri-Axial Force Sensor

[+] Author Affiliations
Jiachou Wang, Weibin Rong, Lining Sun, Hui Xie, Wei Chen

Harbin Institute of Technology, Harbin, Heilongjiang, China

Paper No. MNC2007-21035, pp. 249-254; 6 pages
doi:10.1115/MNC2007-21035
From:
  • 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
  • First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B
  • Sanya, Hainan, China, January 10–13, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4265-7 | eISBN: 0-7918-3794-7
  • Copyright © 2007 by ASME

abstract

A novel micro gripper integrating tri-axial force sensor and two grades displacement amplifier is presented in this paper, which bases on the technology of Piezoresistive detection and use PZT as its micro driving component. The micro tri-axial force sensor is fabricated on a single-crystalline-silicon by the technology of MEMS and consists of a flexible cross-structure realized by deep reactive ion etching (DRIE). The arms of the cross-structure are connected to a silicon frame and to the central part of the cross-structure. After modeling the amplifier structure of micro gripper and the sensor, finite element method (FEM) is used to analyze the displacement of the micro gripper and the deformation of the cross-structure elastic cantilever. A calibration method of tri-axial sensor based on the technology of microscopic vision and the principle of bending deflection cantilever is proposed. The experimental verified that the sensor are high level of intrinsic decoupling of the signals from strain gauge, high resolutions in all three axes, high linearity and repeatability and simple produce of calculation. And also show the micro gripper is reasonable and practical. The sensor is capable of resolving forces up to 10mN with resolution of 2.4μN in x axis and y axis and up to 10mN with resolution of 4.2μN in z axis; the gripping displacement of the micro gripper is from 20μm to 300μm.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In