Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Sub-Continuum Energy Transport on Effective Thermal Conductivity in Nanoporous Silica (Aerogel)

[+] Author Affiliations
Brian R. Smith, Cristina H. Amon

Carnegie Mellon University, Pittsburgh, PA

Paper No. IMECE2003-42289, pp. 311-319; 9 pages
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems and Photonic Design, and Nanotechnology
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3714-9 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME


This paper analyzes the effect of Fourier vs. subcontinuum heat transport through thin layers of nanoporous silica (aerogel) in the framework of an infrared focal plane array (IRFPA) sensor system. Aerogel is introduced as a compatible material for emerging microsystems applications and the comparison between aerogel and conventional insulation systems is analyzed. Correlations between aerogel’s macro-scale thermal properties and its nano-scale structure are discussed to address the effect of the material’s amorphous structure and sub-continuum phonon transport phenomena on macro-scale thermal conductivity. Simulations using the Lattice Boltzmann Method (LBM) quantify the effect of phonon scattering on silica conductivity. Techniques for extending the analysis to a three-dimensional silica matrix are discussed in light of recent advances in the simulation of aerogel morphology.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In