0

Full Content is available to subscribers

Subscribe/Learn More  >

On Improving the Accuracy of Micromachined Gyroscopes Based on Multi-Sensor Fusion

[+] Author Affiliations
Honglong Chang, Peng Zhang, Min Hu, Weizheng Yuan

Northwestern Polytechnical University, Xi’an, China

Paper No. MNC2007-21003, pp. 213-217; 5 pages
doi:10.1115/MNC2007-21003
From:
  • 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
  • First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B
  • Sanya, Hainan, China, January 10–13, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4265-7 | eISBN: 0-7918-3794-7
  • Copyright © 2007 by ASME

abstract

Current state-of-the-art micromachined gyroscopes can not compete with the established sensors in high-accuracy application areas such as guidance and inertial navigation. In this paper one method based on homogeneous multi-sensor fusion was presented to improve the accuracy of the micromachined gyroscopes. In this method several gyroscopes of the same kind were combined into one single effective device through Kalman filtering, the performance of which would surpass that of any individual sensor. The secret of the performance improving lies in the optimal estimation of the random noise sources such as rate random walk and angular random walk for compensating the measurement values. Especially, the cross correlation between the noises of the same type from different gyroscopes was used to establish the system noise covariance matrix and the measurement noise covariance matrix for Kalman filtering to improve the performance further. On the other hand, contrasted with the current static filter design we firstly proposed one difference modeling method to establish the dynamic filter to satisfy the optimal estimation in the situation with angular rate input, in which the mutual subtraction of the measurement values between every two gyroscopes in the sensor array could avoid the trouble of obtaining the true rate. The experiments showed that three gyroscopes with bias drift of 35 degree per hour were able to be combined into one virtual gyroscope with drift of 0.15 degree per hour and 20 degree per hour through the presented static filter and dynamic filter respectively. The multi-sensor fusion method is really capable of improving the accuracy of the micromachined gyroscopes, which provides the possibility of using these low cost MEMS sensors in high-accuracy application areas.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In