0

Full Content is available to subscribers

Subscribe/Learn More  >

Design and Analysis of Micromachined Thermosyphon for Cooling of High-Power InP HBT Circuits

[+] Author Affiliations
H. Khalkhali, K. Kurabayashi

University of Michigan, Ann Arbor, MI

S. Mohammadi, L. P. B. Katehi

Purdue University, West Lafayette, IN

Paper No. IMECE2003-41108, pp. 285-293; 9 pages
doi:10.1115/IMECE2003-41108
From:
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems and Photonic Design, and Nanotechnology
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3714-9 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME

abstract

Integrated InP heterojunction bipolar transistors (HBTs) are used as a high-speed switch in high-power radio frequency (RF) circuits for microwave wireless communications. The power dissipation of each of these devices often reaches as high as 1 W, raising concerns for their thermal reliability. The relatively poor thermal conductivity of InP prohibits effective spreading of heat within the device substrate. To address this problem, this work proposes a novel microfluidic device called the “micro thermosyphon” for cooling the InP-based microwave circuits. This paper describes the concept of the micro thermosyphon and presents its design and analysis, accounting for the large surface tension effect of the working fluid at the micrometer scale. Our simulation suggests that the proposed device could remove a heat flux density as large as 25 W/cm2 from a high-power InP HBT circuit while maintaining the circuit temperature lower than 100 °C. The micro thermosyphon is a fully passive cooling device suited for achieving effective on-chip cooling without requiring any drive power. Experimental work is currently being under way to validate the device performance.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In